By Topic

System Identification in Wireless Relay Networks Via a Gaussian Process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gareth W. Peters ; Department of Statistical Science, University College London, London , U.K. ; Ido Nevat ; Jinhong Yuan ; Iain B. Collings

We present a flexible stochastic model for a class of cooperative wireless relay networks, in which the relay processing functionality is not known at the destination. In addressing this problem, we develop efficient algorithms to perform relay identification in a wireless relay network. We first construct a statistical model based on a representation of the system using Gaussian processes (GPs) in a nonstandard manner due to the way we treat the imperfect channel-state information. We then formulate the estimation problem to perform system identification, taking into account complexity and computational efficiency. Next, we develop a set of three algorithms to solve the identification problem, each of decreasing complexity, trading off the estimation bias for computational efficiency. The joint optimization problem is tackled through a Bayesian framework using the iterated conditioning on the modes (ICM) methodology. We develop a lower bound and several suboptimal computationally efficient solutions to the identification problem for comparison. We illustrate the estimation performance of our methodology for a range of widely used relay functionalities. The relative total error attained by our algorithm compared to the lower bound is found to be at worst 9% for low signal-to-noise ratio values under all functions considered. The effect of the relay functional estimation error is also studied through BER simulations and is shown to be less than 2 dB worse than the lower bound.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:61 ,  Issue: 9 )