We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Per-Device Adaptive Test for Analog/RF Circuits Using Entropy-Based Process Monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yilmaz, E. ; Arizona State Univ., Tempe, AZ, USA ; Ozev, S. ; Butler, K.M.

We present an adaptive test flow for mixed-signal circuits that aims at optimizing the test set on a per-device basis so that more test resources can be devoted to marginal devices while passing devices that are not marginal with less testing. Cumulative statistics of the process are monitored using a differential entropy-based approach and updated only when necessary. Thus, process shift is captured and continuously incorporated into the analysis. We also include provisions to identify potentially defective devices and test them more extensively since these devices do not conform to learned collective information. We conduct experiments on an low-noise amplifier circuit in simulations, and apply our techniques to production data of two distinct industrial circuits. Both the simulation results and the results on large-scale production data show that adaptive test provides the best tradeoff between test time and test quality as measured in terms of defective parts per million.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:21 ,  Issue: 6 )