By Topic

Track Creation and Deletion Framework for Long-Term Online Multiface Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Duffner, S. ; Idiap Res. Inst., Martigny, Switzerland ; Odobez, J.

To improve visual tracking, a large number of papers study more powerful features, or better cue fusion mechanisms, such as adaptation or contextual models. A complementary approach consists of improving the track management, that is, deciding when to add a target or stop its tracking, for example, in case of failure. This is an essential component for effective multiobject tracking applications, and is often not trivial. Deciding whether or not to stop a track is a compromise between avoiding erroneous early stopping while tracking is fine, and erroneous continuation of tracking when there is an actual failure. This decision process, very rarely addressed in the literature, is difficult due to object detector deficiencies or observation models that are insufficient to describe the full variability of tracked objects and deliver reliable likelihood (tracking) information. This paper addresses the track management issue and presents a real-time online multiface tracking algorithm that effectively deals with the above difficulties. The tracking itself is formulated in a multiobject state-space Bayesian filtering framework solved with Markov Chain Monte Carlo. Within this framework, an explicit probabilistic filtering step decides when to add or remove a target from the tracker, where decisions rely on multiple cues such as face detections, likelihood measures, long-term observations, and track state characteristics. The method has been applied to three challenging data sets of more than 9 h in total, and demonstrate a significant performance increase compared to more traditional approaches (Markov Chain Monte Carlo, reversible-jump Markov Chain Monte Carlo) only relying on head detection and likelihood for track management.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 1 )