By Topic

GestureFlow: QoE-Aware Streaming of Multi-TouchGestures in Interactive Multimedia Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuan Feng ; Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON, Canada ; Zimu Liu ; Baochun Li

With the proliferation of multi-touch mobile devices, such as smartphones and tablets, users interact with devices in non-conventional gesture-intensive ways. As a new way to interact with mobile devices, gestures have been proven to be intuitive and natural with a minimal learning curve, and can be used in interactive multimedia applications. In order for multiple users to collaborate in an interactive manner, we propose that gestures can be streamed in multiple broadcast sessions, with each session corresponding to one of the users as the source of a gesture stream. During the interactive session, the Quality of Experience (QoE) of mobile users hinges upon delays from when gestures are entered by the source to when they are recognized by each of the receivers, which we refer to as gesture recognizing delays. In this paper, we present the design of GestureFlow, a gesture broadcast protocol designed specifically for concurrent gesture streams in multiple broadcast sessions, such that the gesture recognizing delay in each session is minimized. We motivate the effectiveness and practicality of using inter-session network coding, and address challenges introduced by the linear dependence of coded packets. We evaluate our protocol design using an extensive array of real-world experiments on mobile devices, involving a new gesture-intensive interactive multimedia application, called MusicScore, that we developed from scratch.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:30 ,  Issue: 7 )