Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Interference Shaping for Improved Quality of Experience for Real-Time Video Streaming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Singh, S. ; Dept. of Electr. & Comput. Eng., Univ. of Texas, Austin, TX, USA ; Andrews, J.G. ; de Veciana, G.

The unpredictability of the wireless medium poses a major challenge to delivering a high quality of experience (QoE) for real-time video services. Bursty co-channel interference is a prominent cause of wireless throughput variability, which leads to video QoE degradation, even for a fixed average channel quality. In this paper, we propose and analyze a network-level resource management algorithm termed interference shaping to smooth out the throughput variations (and hence improve the QoE) of video users by decreasing the peak rate of co-channel best effort users. Wireless link capacity variations are mapped to the real-time video packet loss rate, and the interference shaping QoE gain for video users is quantified by benchmarking against a modified multi-scale structural similarity (H-MS-SSIM) index. H-MS-SSIM is an accurate perceptual video quality metric that incorporates the important hysteresis effect whereby the current QoE (which is subjective) may strongly depend on the recent past. The proposed technique increases mean QoE and reduces the QoE variability over time, with a net perceptual increase of about 2-3x in illustrative settings while incurring insignificant decrease in the QoE for co-channel best effort users. Interference shaping can be implemented in both unicast and multicast real-time video streaming with much higher potential gains for multicast.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:30 ,  Issue: 7 )