By Topic

Fast Scan-Chain Ordering for 3-D-IC Designs Under Through-Silicon-Via (TSV) Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Christina C. -H. Liao ; Department of Electrical Engineering, National Chaio Tung University, Hsinchu, Taiwan ; Allen W. -T. Chen ; Louis Y. -Z. Lin ; Charles H. -P. Wen

This brief addresses the problem of scan-chain ordering under a limited number of through-silicon vias (TSVs), and proposes a fast two-stage algorithm to compute a final order of scan flip-flops. To enable 3-D optimization, a greedy algorithm, multiple fragment heuristic, is modified and combined with a dynamic closest-pair data structure, FastPair, to derive a good initial solution in stage one. Stage two initiates two local refinement techniques, 3-D planarization and 3-D relaxation, to reduce the wire (and/or power) cost and to relax the number of TSVs in use to meet TSV constraints, respectively. Experimental results show that the proposed algorithm results in comparable performance (in terms of wire cost only, power cost only, and both wire-and-power cost) to a genetic-algorithm method but runs two-order faster, which makes it practical for TSV-constrained scan-chain ordering for 3-D-IC designs.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:21 ,  Issue: 6 )