By Topic

Power Network Optimization Based on Link Breaking Methodology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Renatas Jakushokas ; Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA ; Eby G. Friedman

A link breaking methodology is introduced to reduce voltage degradation within mesh structured power distribution networks. The resulting power distribution network combines a single power distribution network to lower the network impedance, and multiple networks to reduce noise coupling among the circuits. Since the sensitivity to supply voltage variations within a power distribution network can vary among various circuits, the proposed methodology reduces the voltage drop at the more sensitive circuits, while penalizes the less sensitive circuits. Each circuit can behave as an aggressor as well as a victim. The methodology utilizes two matrices describing the aggressiveness and sensitivity of a circuit. The proposed methodology is evaluated for multiple case studies, demonstrating a reduction in the voltage drop in the sensitive circuits. Based on these case studies, the voltage is improved by 5% at those nodes with the highest sensitivity. The voltage prior to application of the link breaking methodology is 96% of the ideal power supply voltage. Lowering the noise on the power network enhances the maximum operating frequency by 16% by utilizing the proposed link breaking methodology. The link breaking methodology has also been compared with a multiple voltage domain methodology, achieving 7% improvement in operating frequency.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:21 ,  Issue: 5 )