By Topic

Multiphase System for Metal Disc Induction Heating: Modeling and RMS Current Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Egalon, J. ; Lab. Plasma et Conversion d''Energie, Univ. de Toulouse, Toulouse, France ; Caux, S. ; Maussion, P. ; Souley, M.
more authors

This paper presents a multiphase induction system modeling for a metal disc heating and further industrial applications such as hot strip mill. An original architecture, with three concentric inductors supplied by three resonant current inverters, leads to a reduced element system, without any coupling transformers, phase loop, mobile screens, or mobile magnetic cores as it could be found in classical solutions. A simulation model is built, based on simplified equivalent models of electric and thermal phenomena. It takes into account the data extracted from Flux2D finite-element software, concerning the energy transfer between the inductor currents and the piece to be heated. It is implemented in a versatile software PSIM, initially dedicated to power electronics. An optimization procedure calculates the optimal supply currents in the inverters in order to obtain a desired power density profile in the work piece. This paper deals with the simulated and experimental results which are compared in open loop and closed loop. This paper ends with a current control method which sets rms inductor currents in continuous and digital conditions.

Published in:

Industry Applications, IEEE Transactions on  (Volume:48 ,  Issue: 5 )