By Topic

A 3D extension to cortex like mechanisms for 3D object class recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Flitton, G. ; Sch. of Eng., Cranfield Univ., Cranfield, UK ; Breckon, T.P. ; Megherbi, N.

We introduce a novel 3D extension to the hierarchical visual cortex model used for prior work in 2D object recognition. Prior work on the use of the visual cortex standard model for the explicit task of object class recognition has solely concentrated on 2D imagery. In this paper we discuss the explicit 3D extension of each layer in this visual cortex model hierarchy for use in object recognition in 3D volumetric imagery. We apply this extended methodology to the automatic detection of a class of threat items in Computed Tomography (CT) security baggage imagery. The CT imagery suffers from poor resolution and a large number of artefacts generated through the presence of metallic objects. In our examination of recognition performance we make a comparison to a codebook approach derived from a 3D SIFT descriptor and demonstrate that the visual cortex method out-performs in this imagery. Recognition rates in excess of 95% with minimal false positive rates are demonstrated in the detection of a range of threat items.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on

Date of Conference:

16-21 June 2012