By Topic

Unsupervised incremental learning for improved object detection in a video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sharma, P. ; Univ. of Southern California, Los Angeles, CA, USA ; Chang Huang ; Nevatia, R.

Most common approaches for object detection collect thousands of training examples and train a detector in an offline setting, using supervised learning methods, with the objective of obtaining a generalized detector that would give good performance on various test datasets. However, when an offline trained detector is applied on challenging test datasets, it may fail in some cases by not being able to detect some objects or by producing false alarms. We propose an unsupervised multiple instance learning (MIL) based incremental solution to deal with this issue. We introduce an MIL loss function for Real Adaboost and present a tracking based effective unsupervised online sample collection mechanism to collect the online samples for incremental learning. Experiments demonstrate the effectiveness of our approach by improving the performance of a state of the art offline trained detector on the challenging datasets for pedestrian category.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on

Date of Conference:

16-21 June 2012