By Topic

Group action induced distances for averaging and clustering Linear Dynamical Systems with applications to the analysis of dynamic scenes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We introduce a framework for defining a distance on the (non-Euclidean) space of Linear Dynamical Systems (LDSs). The proposed distance is induced by the action of the group of orthogonal matrices on the space of statespace realizations of LDSs. This distance can be efficiently computed for large-scale problems, hence it is suitable for applications in the analysis of dynamic visual scenes and other high dimensional time series. Based on this distance we devise a simple LDS averaging algorithm, which can be used for classification and clustering of time-series data. We test the validity as well as the performance of our group-action based distance on synthetic as well as real data and provide comparison with state-of-the-art methods.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on

Date of Conference:

16-21 June 2012