By Topic

Active image clustering: Seeking constraints from humans to complement algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Biswas, A. ; Comput. Sci. Dept., Univ. of Maryland, College Park, MD, USA ; Jacobs, D.

We propose a method of clustering images that combines algorithmic and human input. An algorithm provides us with pairwise image similarities. We then actively obtain selected, more accurate pairwise similarities from humans. A novel method is developed to choose the most useful pairs to show a person, obtaining constraints that improve clustering. In a clustering assignment elements in each data pair are either in the same cluster or in different clusters. We simulate inverting these pairwise relations and see how that affects the overall clustering. We choose a pair that maximizes the expected change in the clustering. The proposed algorithm has high time complexity, so we also propose a version of this algorithm that is much faster and exactly replicates our original algorithm. We further improve run-time by adding heuristics, and show that these do not significantly impact the effectiveness of our method. We have run experiments in two different domains, namely leaf images and face images, and show that clustering performance can be improved significantly.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on

Date of Conference:

16-21 June 2012