By Topic

A learning based deformable template matching method for automatic rib centerline extraction and labeling in CT images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Dijia Wu ; Siemens Corp. Res., Princeton, NJ, USA ; Liu, D. ; Puskas, Z. ; Chao Lu
more authors

The automatic extraction and labeling of the rib centerlines is a useful yet challenging task in many clinical applications. In this paper, we propose a new approach integrating rib seed point detection and template matching to detect and identify each rib in chest CT scans. The bottom-up learning based detection exploits local image cues and top-down deformable template matching imposes global shape constraints. To adapt to the shape deformation of different rib cages whereas maintain high computational efficiency, we employ a Markov Random Field (MRF) based articulated rigid transformation method followed by Active Contour Model (ACM) deformation. Compared with traditional methods that each rib is individually detected, traced and labeled, the new approach is not only much more robust due to prior shape constraints of the whole rib cage, but removes tedious post-processing such as rib pairing and ordering steps because each rib is automatically labeled during the template matching. For experimental validation, we create an annotated database of 112 challenging volumes with ribs of various sizes, shapes, and pathologies such as metastases and fractures. The proposed approach shows orders of magnitude higher detection and labeling accuracy than state-of-the-art solutions and runs about 40 seconds for a complete rib cage on the average.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on

Date of Conference:

16-21 June 2012