By Topic

Sparse Bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer's disease

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)

Alzheimer's disease (AD) is the most common form of dementia that causes progressive impairment of memory and other cognitive functions. Multivariate regression models have been studied in AD for revealing relationships between neuroimaging measures and cognitive scores to understand how structural changes in brain can influence cognitive status. Existing regression methods, however, do not explicitly model dependence relation among multiple scores derived from a single cognitive test. It has been found that such dependence can deteriorate the performance of these methods. To overcome this limitation, we propose an efficient sparse Bayesian multi-task learning algorithm, which adaptively learns and exploits the dependence to achieve improved prediction performance. The proposed algorithm is applied to a real world neuroimaging study in AD to predict cognitive performance using MRI scans. The effectiveness of the proposed algorithm is demonstrated by its superior prediction performance over multiple state-of-the-art competing methods and accurate identification of compact sets of cognition-relevant imaging biomarkers that are consistent with prior knowledge.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on

Date of Conference:

16-21 June 2012