Cart (Loading....) | Create Account
Close category search window
 

A unified approach to salient object detection via low rank matrix recovery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaohui Shen ; Northwestern Univ., Evanston, IL, USA ; Ying Wu

Salient object detection is not a pure low-level, bottom-up process. Higher-level knowledge is important even for task-independent image saliency. We propose a unified model to incorporate traditional low-level features with higher-level guidance to detect salient objects. In our model, an image is represented as a low-rank matrix plus sparse noises in a certain feature space, where the non-salient regions (or background) can be explained by the low-rank matrix, and the salient regions are indicated by the sparse noises. To ensure the validity of this model, a linear transform for the feature space is introduced and needs to be learned. Given an image, its low-level saliency is then extracted by identifying those sparse noises when recovering the low-rank matrix. Furthermore, higher-level knowledge is fused to compose a prior map, and is treated as a prior term in the objective function to improve the performance. Extensive experiments show that our model can comfortably achieves comparable performance to the existing methods even without the help from high-level knowledge. The integration of top-down priors further improves the performance and achieves the state-of-the-art. Moreover, the proposed model can be considered as a prototype framework not only for general salient object detection, but also for potential task-dependent saliency applications.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on

Date of Conference:

16-21 June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.