By Topic

Fan Shape Model for object detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xinggang Wang ; Department of Electronics and Information Engineering, Huazhong University of Science and Technology ; Xiang Bai ; Tianyang Ma ; Wenyu Liu
more authors

We propose a novel shape model for object detection called Fan Shape Model (FSM). We model contour sample points as rays of final length emanating for a reference point. As in folding fan, its slats, which we call rays, are very flexible. This flexibility allows FSM to tolerate large shape variance. However, the order and the adjacency relation of the slats stay invariant during fan deformation, since the slats are connected with a thin fabric. In analogy, we enforce the order and adjacency relation of the rays to stay invariant during the deformation. Therefore, FSM preserves discriminative power while allowing for a substantial shape deformation. FSM allows also for precise scale estimation during object detection. Thus, there is not need to scale the shape model or image in order to perform object detection. Another advantage of FSM is the fact that it can be applied directly to edge images, since it does not require any linking of edge pixels to edge fragments (contours).

Published in:

Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on

Date of Conference:

16-21 June 2012