By Topic

Physical Layer Security for Two-Way Untrusted Relaying With Friendly Jammers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rongqing Zhang ; State Key Lab. of Adv. Opt. Commun. Syst. & Networks, Peking Univ., Beijing, China ; Lingyang Song ; Zhu Han ; Bingli Jiao

In this paper, we consider a two-way relay system where the two sources can only communicate through an untrusted intermediate relay and investigate the physical layer security issue in this two-way untrusted relay scenario. Specifically, we regard the intermediate relay as an eavesdropper from which the information transmitted by the sources needs to be kept confidential, despite the fact that its cooperation in relaying this information is essential. We first indicate that a nonzero secrecy rate is indeed achievable in this two-way untrusted relay system even without the help of external friendly jammers. As for the system with friendly jammers, after further analysis, we can obtain the secrecy rate of the sources can be effectively improved by utilizing proper jamming power from the friendly jammers. Then, we formulate a Stackelberg game between the sources and the friendly jammers as a power control scheme to achieve the optimized secrecy rate of the sources, in which the sources are treated as the sole buyer and the friendly jammers are the sellers. In addition, the optimal solutions of the jamming power and the asking prices are given, and a distributed updating algorithm to obtain the Stackelberg equilibrium is provided for the proposed game. Finally, the simulation results verify the properties and efficiency of the proposed Stackelberg-game-based scheme.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:61 ,  Issue: 8 )