Cart (Loading....) | Create Account
Close category search window
 

Smart DC Power Management System Based on Software-Configurable Power Modules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rodriguez, M. ; Department of Electrical, Computer and Energy Engineering, University of Colorado at Boulder, Boulder, USA ; Stahl, G. ; Corradini, L. ; Maksimovic, D.

DC bus-based systems are envisioned as an enabling technology to integrate renewable energy sources, energy storage devices, and a variety of loads in a number of power management and distribution scenarios. The system design and integration challenges include accommodating heterogeneous components, the wide variability of operating conditions, and system stability issues arising from dynamical interactions between the components. This paper proposes a flexible, smart dc power management architecture based on identical digitally controlled bidirectional dc–dc modules that can be software configured to enable simple system design, exceptional system flexibility, and optimization of the use of available resources. Design of the reconfigurable digital control infrastructure of such versatile dc power system is discussed in detail from its system-level description to the low-level design of the digital compensators. Stability analysis of the dc bus voltage is also discussed, proving the robustness of the power architecture from a theoretical standpoint. The proposed approach is then demonstrated on an experimental dc power management system consisting of several 500 W, bidirectional dc–dc modules operating from a 24-V dc bus.

Published in:

Power Electronics, IEEE Transactions on  (Volume:28 ,  Issue: 4 )

Date of Publication:

April 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.