By Topic

Exploration of Second-Order Effects in High-Performance Continuous-Time \Sigma \Delta Modulators Using Discrete-Time Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei-Lin Chen ; National Tsing Hua University, Hsinchu, Taiwan ; Chih-Cheng Hsieh

This paper proposes a method for the discretization of continuous-time sigma-delta modulators (CT-ΣΔMs) with various circuit nonidealities. Recurrence equations for the sampled states of a CT-ΣΔM are derived to find the equivalent discrete-time (DT) transfer functions of CT loop filters along with several second-order effects, such as finite DC gain, finite unity-gain bandwidth (GBW) of an amplifier, and excess loop delay (ELD), etc. This allows a synthesis flow that considers these nonidealities at the system level. The proposed approach generalizes existing works relating to the DT modeling of a CT-ΣΔM, and is applicable to arbitrary-order loop filters with unconstrained digital-to-analog converter (DAC) output waveforms. According to the DT model, a third-order low-pass modulator design based on a numerical optimization shows that the second-order effects of a CT-ΣΔM can be noticeably mitigated by the appropriate coefficient scaling.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:59 ,  Issue: 12 )