By Topic

Noncoherent Bit-Interleaved Coded OSTBC-OFDM with Maximum Spatial-Frequency Diversity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ye Yang ; State Key Lab. of Integrated Service Networks, Xidian Univ., Xi''an, China ; Tsung-Hui Chang ; Wing-Kin Ma ; Jianhua Ge
more authors

The combination of bit-interleaved coded modulation (BICM), orthogonal space-time block coding (OSTBC) and orthogonal frequency division multiplexing (OFDM) has been shown recently to be able to achieve maximum spatial-frequency diversity in frequency selective multi-path fading channels, provided that perfect channel state information (CSI) is available to the receiver. In view of the fact that perfect CSI can be obtained only if a sufficient amount of resource is allocated for training or pilot data, this paper investigates pilot-efficient noncoherent decoding methods for the BICM-OSTBC-OFDM system. In particular, we propose a noncoherent maximum-likelihood (ML) decoder that uses only one OSTBC-OFDM block. This block-wise decoder is suitable for relatively fast fading channels whose coherence time may be as short as one OSTBC-OFDM block. Our focus is mainly on noncoherent diversity analysis. We study a class of carefully designed transmission schemes, called perfect channel identifiability (PCI) achieving schemes, and show that they can exhibit good diversity performance. Specifically, we present a worst-case diversity analysis framework to show that PCI-achieving schemes can achieve the maximum noncoherent spatial-frequency diversity of BICM-OSTBC-OFDM. The developments are further extended to a distributed BICM-OSTBC-OFDM scenario in cooperative relay networks. Simulation results are presented to confirm our theoretical claims and show that the proposed noncoherent schemes can exhibit near-coherent performance.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:11 ,  Issue: 9 )