By Topic

Using Graphics Processors for High Performance SimRank Computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
He, Guoming ; Renmin University of China, Beijing ; Li, Cuiping ; Chen, Hong ; Du, Xiaoyong
more authors

Recently there has been a lot of interest in graph-based analysis. One of the most important aspects of graph-based analysis is to measure similarity between nodes in a graph. SimRank is a simple and influential measure of this kind, based on a solid graph theoretical model. However, existing methods on SimRank computation suffer from two limitations: 1) the computing cost can be very high in practice; and 2) they can only be applied on static graphs. In this paper, we exploit the inherent parallelism and high memory bandwidth of graphics processing units (GPU) to accelerate the computation of SimRank on large graphs. Furthermore, based on the observation that SimRank is essentially a first-order Markov Chain, we propose to utilize the iterative aggregation techniques for uncoupling Markov chains to compute SimRank scores in parallel for large graphs. The iterative aggregation method can be applied on dynamic graphs. Moreover, it can handle not only the link-updating problem but also the node-updating problem. We give the corresponding theoretical justification and analysis, propose three optimization strategies to further improve the computation efficiency, and extend the proposed algorithm to dynamic graphs. Extensive experiments on synthetic and real data sets verify that the proposed methods are efficient and effective.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:24 ,  Issue: 9 )