By Topic

Oriented diffusion filtering for enhancing low-quality fingerprint images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gottschlich, C. ; Inst. for Math. Stochastics, Univ. of Gottingen, Göttingen, Germany ; Schönlieb, C.-B.

To enhance low-quality fingerprint images, we present a novel method that first estimates the local orientation of the fingerprint ridge and valley flow and next performs oriented diffusion filtering, followed by a locally adaptive contrast enhancement step. By applying the authors' new approach to low-quality images of the FVC2004 fingerprint databases, the authors are able to show its competitiveness with other state-of-the-art enhancement methods for fingerprints like curved Gabor filtering. A major advantage of oriented diffusion filtering over those is its computational efficiency. Combining oriented diffusion filtering with curved Gabor filters led to additional improvements and, to the best of the authors' knowledge, the lowest equal error rates achieved so far using MINDTCT and BOZORTH3 on the FVC2004 databases. The recognition performance and the computational efficiency of the method suggest to include oriented diffusion filtering as a standard image enhancement add-on module for real-time fingerprint recognition systems. In order to facilitate the reproduction of these results, an implementation of the oriented diffusion filtering for Matlab and GNU Octave is made available for download.

Published in:

Biometrics, IET  (Volume:1 ,  Issue: 2 )