By Topic

Quantum networking and internetworking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Quantum networks build on entanglement and quantum measurement to bring new capabilities to communication systems. Quantum physical effects can be used to detect eavesdropping, to improve the shared sensitivity of separated astronomical instruments, or to create distributed states that will enable numerical quantum computation over a distance using teleportation. Because quantum data is fragile and some quantum operations are probabilistic, errors and distributed calculations must be managed aggressively and perhaps cooperatively among nodes. Solutions to these problems will have both similarities to and differences from purely classical networks. Architectures for large-scale quantum networking and internetworking are in development, paralleling theoretical and experimental work on physical layers and low-level error management and connection technologies. With unentangled quantum networks already deployed, entangled networks may appear within the next few years and will form a vibrant research topic in the coming decade.

Published in:

Network, IEEE  (Volume:26 ,  Issue: 4 )