By Topic

Increased FPGA capacity enables scalable, flexible CCMs: an example from image processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Greenbaum, Jack ; Ricoh California Res. Center, Menlo Park, CA, USA ; Baxter, M.

The need to partition computation across multiple programmable devices in array architecture CCMs leads to performance bottlenecks in data flow through the computer and wiring delays between adjacent devices. However, significant improvements in FPGA capacities have brought one to a threshold where direct inter-chip connections are not required because an entire algorithm can be implemented on a single device for important problems in areas such as image processing. One can now implement architectures that are similar to today's parallel computers in which interprocessor communication is done through shared memory or dedicated communication hardware. The benefits of this approach are system-wide scalability and flexibility. The authors illustrate this new style of CCM with examples from image processing, in particular a novel FPGA implementation of block motion estimation (as for MPEG encoding). Based on the lessons learned from these specific examples, they generalize and speculate on implications for new CCM architectures

Published in:

Field-Programmable Custom Computing Machines, 1997. Proceedings., The 5th Annual IEEE Symposium on

Date of Conference:

16-18 Apr 1997