By Topic

SAMMPLE: Detecting Semantic Indoor Activities in Practical Settings Using Locomotive Signatures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

We analyze the ability of mobile phone-generated accelerometer data to detect high-level (i.e., at the semantic level) indoor lifestyle activities, such as cooking at home and working at the workplace, in practical settings. We design a 2-Tier activity extraction framework (called SAMMPLE) for our purpose. Using this, we evaluate discriminatory power of activity structures along the dimension of statistical features and after a transformation to a sequence of individual locomotive micro-activities (e.g. sitting or standing). Our findings from 152 days of real-life behavioral traces reveal that locomotive signatures achieve an average accuracy of 77.14%, an improvement of 16.37% over directly using statistical features.

Published in:

Wearable Computers (ISWC), 2012 16th International Symposium on

Date of Conference:

18-22 June 2012