Cart (Loading....) | Create Account
Close category search window
 

The RAW benchmark suite: computation structures for general purpose computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Babb, J. ; Lab. for Comput. Sci., MIT, Cambridge, MA, USA ; Frank, M. ; Lee, V. ; Waingold, E.
more authors

The RAW benchmark suite consists of twelve programs designed to facilitate comparing, validating, and improving reconfigurable computing systems. These benchmarks run the gamut of algorithms found in general purpose computing, including sorting, matrix operations, and graph algorithms. The suite includes an architecture-independent compilation framework, Raw Computation Structures (RawCS), to express each algorithm's dependencies and to support automatic synthesis, partitioning, and mapping to a reconfigurable computer. Within this framework, each benchmark is portably designed in both C and Behavioral Verilog and scalably parameterized to consume a range of hardware resource capacities. To establish initial benchmark ratings, we have targeted a commercial logic emulation system based on virtual wires technology to automatically generate designs up to millions of gates (14 to 379 FPGAs). Because the virtual wires techniques abstract away machine-level details like FPGA capacity and interconnect, our hardware target for this system is an abstract reconfigurable logic fabric with memory-mapped host I/O. We report initial speeds in the range of 2X to 1800X faster than a 2.82 SPECint95 SparcStation 20 and encourage others in the field to run these benchmarks on other systems to provide a standard comparison

Published in:

Field-Programmable Custom Computing Machines, 1997. Proceedings., The 5th Annual IEEE Symposium on

Date of Conference:

16-18 Apr 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.