Cart (Loading....) | Create Account
Close category search window
 

An FPGA architecture for DRAM-based systolic computations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Margolus, N. ; Center for Comput. Sci., Boston Univ., MA, USA

We propose an FPGA chip architecture based on a conventional FPGA logic array core, in which I/O pins are clocked at a much higher rate than that of the logic array that they serve. Wide data paths within the chip are time multiplexed at the edge of the chip into much faster and narrower data paths that run off-chip. This kind of arrangement makes it possible to interface a relatively slow FPGA core with high speed memories and data streams, and is useful for many pin-limited FPGA applications. For efficient use of the highest bandwidth DRAMs, our proposed chip includes a RAMBUS DRAM interface, a burst-transfer controller, and burst buffers. This proposal is motivated by our work with virtual processor cellular automata (CA) machines-a kind of SIMD computer. Our next generation of CA machines requires reconfigurable FPGA-like processors coupled to the highest speed DRAMs and SRAMs available. Unfortunately, no current FPGA chips have appropriate DRAM I/O support or the speed needed to easily interface with pipelined SRAMs. The chips proposed would make a wide range of large-scale CA simulations of 3D physical systems practical and economical-simulations that are currently well beyond the reach of any existing computer. These chips would also be well suited to a broad range of other simulation, graphics and DSP-like applications

Published in:

Field-Programmable Custom Computing Machines, 1997. Proceedings., The 5th Annual IEEE Symposium on

Date of Conference:

16-18 Apr 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.