By Topic

A Improve Direct Path Seeking Algorithm for L1/2 Regularization, with Application to Biological Feature Selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Cheng Liu ; Macau Univ. of Sci. & Technol., Macau, China ; Yong Liang ; Xin-Ze Luan ; Kwong-Sak Leung
more authors

The special importance of L1/2 regularization has been recognized in recent studies on sparsity problems, particularly, on feature selection. The L1/2 regularization is nonconvex optimization problem, it is difficult in general to has a efficient algorithm to solutions. The direct path seeking method can produce solutions that closely approximate those for any convex loss function and nonconvex constraints. The improve path seeking methods provide us an effect way to solve the problem of L1/2 regularization with nonconvex penalty. In this paper, we investigate a improve direct path seeking algorithm to solve the L1/2 regularization. This method adopts initial ordinary regression coefficients as warm start for first step increment, it is significantly faster than ordinary path seeking algorithm. We demonstrate its performance of feature selection on several simulated and real data sets.

Published in:

Biomedical Engineering and Biotechnology (iCBEB), 2012 International Conference on

Date of Conference:

28-30 May 2012