Cart (Loading....) | Create Account
Close category search window
 

Role of InAs and GaAs terminated heterointerfaces at source/channel on the mixed As-Sb staggered gap tunnel field effect transistor structures grown by molecular beam epitaxy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Zhu, Y. ; Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA ; Jain, N. ; Vijayaraghavan, S. ; Mohata, D.K.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4737462 

The structural, morphological, defect properties, and OFF state leakage current mechanism of mixed As-Sb type-II staggered gap GaAs-like and InAs-like interface heterostructure tunnel field effect transistors (TFETs) grown on InP substrates using linearly graded InxAl1-xAs buffer by molecular beam epitaxy are investigated and compared. Symmetric relaxation of >90% and >75% in the two orthogonal 〈110〉 directions with minimal lattice tilt was observed for the terminal GaAs0.35Sb0.65 and In0.7Ga0.3As active layers of GaAs-like and InAs-like interface TFET structures, respectively, indicating that nearly equal numbers of α and β dislocations were formed during the relaxation process. Atomic force microscopy reveals extremely ordered crosshatch morphology and low root mean square roughness of ∼3.17 nm for the InAs-like interface TFET structure compared to the GaAs-like interface TFET structure of ∼4.46 nm at the same degree of lattice mismatch with respect to the InP substrates. The GaAs-like interface exhibited higher dislocation density, as observed by cross-sectional transmission electron microscopy, resulting in the elongation of reciprocal lattice point of In0.7Ga0.3As channel and drain layers in the reciprocal space maps, while the InAs-like interface creates a defect-free interface for the pseudomorphic growth of the In0.7Ga0.3As channel and drain layers with minimal elongation along the Δω direction. The impact of the structural differences between the two interface types on metamorphic TFET devices was demonstrated by comparing p+-i-n+ leakage current of identical TFET devices that were fabricated using GaAs-like and InAs-like interface TFET structures. Higher OFF state leakage current dominated by band-to-band tunneling process due to highe- degree of defects and dislocations was observed in GaAs-like interface compared to InAs-like interface where type-II staggered band alignment was well maintained. Significantly lower OFF state leakage current dominated by the field enhanced Shockley-Read-Hall generation-recombination process at different temperatures was observed in InAs-like TFET structure. The fixed positive charge at the source/channel heterointerface influences the band lineup substantially with charge density greater than 1 × 1012/cm2 and the band alignment is converted from staggered gap to broken gap at ∼6 × 1012/cm2. Clearly, InAs-like interface TFET structure exhibited 4× lower OFF state leakage current, which is attributed primarily to the impact of the layer roughness, defect properties on the carrier recombination rate, suggesting great promise for metamorphic TFET devices for high-performance, and ultra-low power applications.

Published in:

Journal of Applied Physics  (Volume:112 ,  Issue: 2 )

Date of Publication:

Jul 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.