By Topic

Hamiltonian-Based Clustering: Algorithms for Static and Dynamic Clustering in Data Mining and Image Processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Casagrande, D. ; Dept. of Electr., Manage., & Mech Eng, Univ. of Udine, Udine, Italy ; Sassano, M. ; Astolfi, A.

The large amount of data available for analysis and management raises the need for defining, determining, and extracting meaningful information from the data. Hence in scientific, engineering, and economics studies, the practice of clustering data arises naturally when sets of data have to be divided into subgroups with the aim of possibly deducting common features for data belonging to the same subgroup. For instance, the innovation scoreboard [1] (see Figure 1) allows for the classification of the countries into four main clusters corresponding to the level of innovation defining the “leaders,” the “followers,” the “trailing,” and the “catching up” countries. Many other disciplines may require or take advantage of a clustering of data, from market research [2] to gene expression analysis [3], from biology to image processing [4][7]. Therefore, several clustering techniques have been developed (for details see “Review of Clustering Algorithms”).

Published in:

Control Systems, IEEE  (Volume:32 ,  Issue: 4 )