By Topic

Power system short-term load forecasting based on neural network with artificial immune algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huang Yue ; Sch. of Inf. Sci. & Eng., Shenyang Ligong Univ., Shenyang, China ; Li Dan ; Gao Liqun

This paper offers one kind of improved artificial immune algorithm which takes different mutation strategy toward different unit that has various quality. This algorithm conducts self-adapt adjustment between mutation rate and crossover rate in order to achieve balance between search accuracy and search efficiency. This paper conducts DAIA-BPNN short-term power load forecast model based on DAIA algorithm. It uses DAIA algorithm to optimize the weight and threshold of BPNN while overcoming the blindness when selecting the weight and threshold of BPNN. The actual calculation example of the short-term power system load forecast shows that the method presented in this paper has higher forecast accuracy and robustness compared with artificial neural networks and regression analysis model.

Published in:

Control and Decision Conference (CCDC), 2012 24th Chinese

Date of Conference:

23-25 May 2012