By Topic

A 260mV L-shaped 7T SRAM with bit-line (BL) Swing expansion schemes based on boosted BL, asymmetric-VTH read-port, and offset cell VDD biasing techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Ming-Pin Chen ; National Tsing Hua University, Taiwan ; Lai-Fu Chen ; Meng-Fan Chang ; Shu-Meng Yang
more authors

This work proposes bit-line (BL) swing expansion schemes (BL-EXPD), which minimize the product (A*VDDmin) of SRAM cell area (A) and the minimum operation voltage (VDDmin) to the best of our knowledge. The key-enablers to minimize A*VDDmin are: L-shaped 7T cell (L7T) and BL-EXPD. The L7T features: (1) an area efficient cell layout, (2) a read-disturb free decoupled 1T read port (RP), and (3) a half-select disturb free write back scheme[1]. The BL-EXPD enables a 9× larger read-BL (RBL) swing at the 6σ point than that in our previously proposed Z8T[2] and allows single BL sensing to reduce cell area. A fabricated 65nm 256-row BL 32Kb L7T SRAM achieved a 260mV VDDmin. As a result, its A*VDDmin is ~50% lower than for Z8T and conventional 8T SRAM cells [3,4].

Published in:

2012 Symposium on VLSI Circuits (VLSIC)

Date of Conference:

13-15 June 2012