By Topic

Prospects for frequency comparison of Sr and Hg optical lattice clocks toward 10−18 uncertainties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Katori, H. ; Dept. of Appl. Phys., Univ. of Tokyo, Tokyo, Japan ; Takamoto, M. ; Takano, T. ; Ushijima, I.
more authors

We are developing optical lattice clocks with a scope of attaining 10-18 fractional uncertainty. Cryogenic silicon cavity targeting 2×10-17 stability at 1s, will allow full utilization of the potential stability of optical lattice clocks. In order to reduce the blackbody radiation shift, which is the most serious source of uncertainties, Sr clocks in cryogenic environment and Hg clocks are underdevelopment. We discuss prospects for clock comparison, no dead time operation of the clocks and fiber link of the clocks between Riken and the University of Tokyo.

Published in:

Frequency Control Symposium (FCS), 2012 IEEE International

Date of Conference:

21-24 May 2012