By Topic

High frequency AlN MEMS resonators with integrated nano hot plate for temperature controlled operation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rinaldi, M. ; Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA ; Yu Hui ; Zuniga, C. ; Tazzoli, A.
more authors

This paper presents the design and experimental verification of the first MEMS resonator ovenized by means of an integrated nano hot plate suspended over the micromechanical resonant element. This first prototype is formed by a composite structure in which a fully anchored Aluminum Nitride (AlN) Lateral Field Excited-Floating (LFE-F) Contour-Mode MEMS resonator (CMR) and a nanoscale heating element are perfectly overlapped and separated by a sub-micron air gap. The placement of the heating element outside the body of the resonator, but suspended over it, allowed maintaining the electromechanical properties of the device unchanged (same kt2·Q compared to the non-ovenized case). This resulted in a 968 MHz ovenized microresonator with quality factor, Q, of ~1800, electromechanical coupling coefficient, kt2, of ~0.9% and motional resistance, Rm, of ~50 Ω. At the same time, efficient ovenization of the MEMS resonator (CMR temperature rise factor of 18.3 K/mW) is achieved by scaling the dimensions of the heating element (i.e. implementing a nano hot plate) and minimizing the air gap between the resonator and the heater.

Published in:

Frequency Control Symposium (FCS), 2012 IEEE International

Date of Conference:

21-24 May 2012