By Topic

Oscillation mitigation for sliding-mode observers in sensorless control of IPMSMs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yue Zhao ; Department of Electrical Engineering, University of Nebraska-Lincoln, 68588-0511 USA ; Wei Qiao ; Long Wu

Back electromagnetic force (EMF)-based methods are commonly used for sensorless control of interior permanent magnet synchronous machines (IPMSMs) in medium and high speed range. The feature of high robustness to system structure and parameter uncertainties makes the sliding-mode observer (SMO) a promising candidate for rotor position estimation. In a practical drive system, because of physical limitations, e.g., sampling frequency and computational resource, it is challenging to obtain a perfect sinusoidal waveform for the back EMF by a SMO, especially in high speed range. As a result, the rotor position obtained from the estimated back EMF by using the traditional inverse tangent method will have nonnegligible oscillations. This paper proposes a novel algorithm, which uses the estimated rotor speed as a feedback signal with the conventional back EMF-based inverse tangent method to extract the rotor position. The proposed algorithm can effectively mitigate the oscillation and improve the dynamic performance of the SMO for rotor position estimation. The proposed algorithm is validated by simulations in MATLAB Simulink as well as experiments on a high-power IPMSM drive system.

Published in:

2012 IEEE Transportation Electrification Conference and Expo (ITEC)

Date of Conference:

18-20 June 2012