By Topic

A signal-based fault detection and classification strategy with application to an internal combustion engine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ahmed, R. ; McMaster Univ., Hamilton, ON, Canada ; Gadsden, S.A. ; El Sayed, M. ; Habibi, S.R.
more authors

Fault detection strategies are important for ensuring the safe and reliable operation of mechanical and electrical systems. Recently, a new signal-based fault detection and classification strategy has been proposed, which makes use of artificial neural networks (NNs) and the smooth variable structure filter (SVSF). The strategy, referred to as the NN-SVSF, has shown promising results with applications to benchmark classification problems. New developments of the SVSF have resulted in improved performance in terms of state and parameter estimation. These developments are used to enhance the NN-SVSF in an effort to further advance the signal-based strategy. This paper studies and compares the results of applying other popular strategies on an internal combustion engine (ICE), for the purposes of fault detection and classification.

Published in:

Transportation Electrification Conference and Expo (ITEC), 2012 IEEE

Date of Conference:

18-20 June 2012