By Topic

A Strong Direct Product Theorem for Quantum Query Complexity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

We show that quantum query complexity satisfies a strong direct product theorem. This means that computing k copies of a function with less than k times the quantum queries needed to compute one copy of the function implies that the overall success probability will be exponentially small in k. For a boolean function f we also show an XOR lemma-computing the parity of k copies of f with less than k times the queries needed for one copy implies that the advantage over random guessing will be exponentially small. We do this by showing that the multiplicative adversary method, which inherently satisfies a strong direct product theorem, characterizes bounded-error quantum query complexity. In particular, we show that the multiplicative adversary bound is always at least as large as the additive adversary bound, which is known to characterize bounded-error quantum query complexity.

Published in:

Computational Complexity (CCC), 2012 IEEE 27th Annual Conference on

Date of Conference:

26-29 June 2012