By Topic

Low-Cost Thin Glass Interposers as a Superior Alternative to Silicon and Organic Interposers for Packaging of 3-D ICs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sukumaran, V. ; Electr. & Comput. Eng. Dept., Georgia Inst. of Technol., Atlanta, GA, USA ; Bandyopadhyay, T. ; Sundaram, V. ; Tummala, R.

Interconnecting integrated circuits (ICs) and 3-D-ICs to the system board (printed circuit board) are currently achieved using organic or silicon-based interposers. Organic interposers face several challenges in packaging 2-D and 3-D-ICs beyond the 32-nm node, primarily due to their poor dimensional stability and coefficient of thermal expansion (CTE) mismatch to silicon. Silicon interposers made with back-end of line wafer processes can achieve the required wiring and I/O density, but their high-cost limit them to high-performance applications. Glass is proposed as a superior alternative to organic and silicon-based interposers for packaging of future ICs and 3-D-ICs with highest I/Os at lowest cost. This paper presents for the first time a novel thin and large panel glass interposer capable of scaling to 700 mm and larger panels with potential for significant cost reduction over interposers made on 200-mm or 300-mm wafers. The formation of small through vias at high speed has been the biggest technical barrier for the adoption of glass as an interposer and system substrate; and this paper describes pioneering research in via-formation in thin glass substrates, using a novel “polymer-on-glass” approach. Electrical modeling and design of through package vias (TPVs) in glass is discussed in detail, and the feasibility of 50-μm pitch TPVs in 180-μm thin glass substrates has been demonstrated. The excellent surface finish and low CTE of glass leads to increased I/O density, and increased functionality per unit area leading to system miniaturization.

Published in:

Components, Packaging and Manufacturing Technology, IEEE Transactions on  (Volume:2 ,  Issue: 9 )