By Topic

An FPGA-based ultrasound imaging system using capacitive micromachined ultrasonic transducers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wong, L.L.P. ; Adv. Micro-/Nano-Devices Lab., Univ. of Waterloo, Waterloo, ON, Canada ; Chen, A.I. ; Logan, A.S. ; Yeow, J.T.W.

We report the design and experimental results of a field-programmable gate array (FPGA)-based real-time ultrasound imaging system that uses a 16-element phased-array capacitive micromachined ultrasonic transducer fabricated using a fusion bonding process. The imaging system consists of the transducer, discrete analog components situated on a custom-made circuit board, the FPGA, and a monitor. The FPGA program consists of five functional blocks: a main counter, transmit and receive beamformer, receive signal pre-processing, envelope detection, and display. No dedicated digital signal processor or personal computer is required for the imaging system. An experiment is carried out to obtain the sector B-scan of a 4-wire target. The ultrasound imaging system demonstrates the possibility of an integrated system-in-a-package solution.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:59 ,  Issue: 7 )