By Topic

An ultrasonic imaging system based on a new SAFT approach and a GPU beamformer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Martín-Arguedas, C.J. ; Centro de Acust. Aplic. y Ensayos No Destructivos (CAEND), Univ. Politec. de Madrid (UPM), Madrid, Spain ; Romero-Laorden, D. ; Martínez-Graullera, O. ; Pérez-López, M.
more authors

The design of newer ultrasonic imaging systems attempts to obtain low-cost, small-sized devices with reduced power consumption that are capable of reaching high frame rates with high image quality. In this regard, synthetic aperture techniques have been very useful. They reduce hardware requirements and accelerate information capture. However, the beamforming process is still very slow, limiting the overall speed of the system. Recently, general-purpose computing on graphics processing unit techniques have been proposed as a way to accelerate image composition. They provide excellent computing power with which a very large volume of data can easily and quickly be processed. This paper describes a new system architecture that merges both principles. Thus, using a minimum-redundancy synthetic aperture technique to acquire the signals (2R-SAFT), and a graphics processing unit as a beamformer, we have developed a new scanner with full dynamic focusing, both on emission and reception, that attains real-time imaging with very few resources.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:59 ,  Issue: 7 )