By Topic

Stable Levitation of a Passive Magnetic Bearing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kevin D. Bachovchin$^{1}$Department of Electrical and Computer Engineering,, Carnegie Mellon University,, Pittsburgh,, PA, USA ; James F. Hoburg ; Richard F. Post

A design for a passive magnetic bearing system that can stably levitate a rotor in all directions is described. The bearing system consists of levitation magnets coupled with a Halbach array stabilizer, which induces currents in stabilization coils, in order to overcome the inherent instability of a system composed only of permanent magnets. The levitation magnet system consists of two pairs of annular ring magnets which provide an upward magnetic levitation force to counteract the downward gravitational force of the rotor. The Halbach array stabilizer consists of two stabilization coils shifted in angular position with respect to one another and centered in the vertical direction between two rotating Halbach arrays. Magnetic fields from permanent magnets are calculated using superposition of fields due to patches of magnetization charge at surfaces where the magnetization is discontinuous. Induced currents in the stabilization coils are calculated by computing the time derivative of the magnetic flux through those coils. Magnetic forces on the rotor are computed using a superposition of forces on each patch of magnetization charge. The entire magnetic bearing system, consisting of both the levitation magnets and the Halbach array stabilizer, is stable to both vertical and lateral displacements. Results are compared with a simpler straightened approximation of the Halbach array stabilizer.

Published in:

IEEE Transactions on Magnetics  (Volume:49 ,  Issue: 1 )