By Topic

A Capacitive Intrabody Communication Channel from 100 kHz to 100 MHz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lucev, Z. ; Fac. of Electr. Eng. & Comput, Univ. of Zagreb, Zagreb, Croatia ; Krois, I. ; Cifrek, M.

Intrabody communication (IBC) uses the human body as a signal transmission medium. In the capacitive coupling IBC approach, the signal is transmitted through the body, and the signal return path is closed through the environment. The received signal level is affected by the orientation of the transmitter with respect to the receiver, the number of ground electrodes connected to the body, the size of the receiver ground plane, and the surrounding environment. In this paper, we present a characterization of the capacitive IBC channel in the frequency range from 100 kHz to 100 MHz, obtained using a network analyzer and a pair of baluns. In order to better understand the transmission path in the frequency range of interest, we analyze the intrabody channel transmission characteristics using different electrode arrangements, test persons, environments, and body positions and movements. The transmission gain increases with frequency for 20 dB/dec and depends on the transmitter to the receiver distance, and the electrode arrangements. For a proper IBC configuration, the variations of the environment, test persons, body positions, and movements affect the transmission gain less than 2 dB.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:61 ,  Issue: 12 )