By Topic

Weighted Fuzzy Spiking Neural P Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jun Wang ; Sch. of Electr. & Inf. Eng., Xihua Univ., Chengdu, China ; Peng Shi ; Hong Peng ; Perez-Jimenez, M.J.
more authors

Spiking neural P systems (SN P systems) are a new class of computing models inspired by the neurophysiological behavior of biological spiking neurons. In order to make SN P systems capable of representing and processing fuzzy and uncertain knowledge, we propose a new class of spiking neural P systems in this paper called weighted fuzzy spiking neural P systems (WFSN P systems). New elements, including fuzzy truth value, certain factor, weighted fuzzy logic, output weight, threshold, new firing rule, and two types of neurons, are added to the original definition of SN P systems. This allows WFSN P systems to adequately characterize the features of weighted fuzzy production rules in a fuzzy rule-based system. Furthermore, a weighted fuzzy backward reasoning algorithm, based on WFSN P systems, is developed, which can accomplish dynamic fuzzy reasoning of a rule-based system more flexibly and intelligently. In addition, we compare the proposed WFSN P systems with other knowledge representation methods, such as fuzzy production rule, conceptual graph, and Petri nets, to demonstrate the features and advantages of the proposed techniques.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:21 ,  Issue: 2 )