By Topic

Optimized power combining technique to design a 20dB gain, 13.5dBm OCP1 60GHz power amplifier using 65nm CMOS technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Aloui, S. ; IMS Lab., Univ. of Bordeaux, Talence, France ; Luque, Y. ; Demirel, N. ; Leite, B.
more authors

Millimeter-wave Distributed Active Transformer (DAT), baluns and zero degree 1-4 splitter have been optimized to design a 60 GHz parallel Power Amplifier (PA). The implementation is based on a thin digital 7 metal layers (1P7M) Back End of Line (BEOL) and Low Power (LP) transistors in 65 nm CMOS technology from STMicroelectronics. A lumped model based analysis is presented to compare pure voltage and mixed voltage and current combining techniques. Simulated and measured results are reported. At 61 GHz, the PA achieves a peak power gain of 20 dB with a 13.5 dBm 1dB-output compression point (OCP1dB), 15.6 dBm output power and a Power Added Efficiency (PAE) of 6.6% from a 1.2 V supply. To the author's knowledge, these results represent the highest linear output power and gain performances among PAs using the same technology.

Published in:

Radio Frequency Integrated Circuits Symposium (RFIC), 2012 IEEE

Date of Conference:

17-19 June 2012