Cart (Loading....) | Create Account
Close category search window

Design and analysis of anchorless shuttle nano-electro-mechanical non-volatile memory for high temperature applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vaddi, R. ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Kim, T.T. ; Pott, V. ; Lin, J.T.M.

This paper presents a novel nano-electro-mechanical (NEM) non-volatile memory (NVM) based on an anchorless structure for high operating temperature (>;200°C). The proposed NEM NVM device has two stable mechanical states obtained by adhesion forces, and is actuated by electrostatic forces. This work further discusses the modeling of the NEM memory device and the scaling effects on the device performance. Finally, a memory cell consisting of the NEM memory device and two MOS transistors (1NEM-2T), and NEM NVM array structure are presented.

Published in:

Reliability Physics Symposium (IRPS), 2012 IEEE International

Date of Conference:

15-19 April 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.