Cart (Loading....) | Create Account
Close category search window
 

Scaled CMOS reliability and considerations for spacecraft systems: Bottom-up and top-down perspectives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
White, M. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA

The recently launched Mars Science Laboratory (MSL) flagship mission, named Curiosity, is the most complex rover ever built by NASA and is scheduled to touch down on the red planet in August, 2012 in Gale Crater. The rover and its instruments will have to endure the harsh environments of the surface of Mars to fulfill its main science objectives. Such complex systems require reliable microelectronic components coupled with adequate component and system-level design margins. Reliability aspects of these elements of the spacecraft system are presented from bottom-up and top-down perspectives.

Published in:

Reliability Physics Symposium (IRPS), 2012 IEEE International

Date of Conference:

15-19 April 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.