Cart (Loading....) | Create Account
Close category search window
 

Accurate motor imagery based dry electrode brain-computer interface system for consumer applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mladenov, T. ; Dept. Inf. & Commun., Gwangju Inst. of Sci. & Technol., Gwangju, South Korea ; Kim, K. ; Nooshabadi, S.

The most common brain-computer interface (BCI) systems use electroencephalographic (EEG) signals to communicate human cognitive or sensory-motor brain activities. Those non-invasive BCI systems rely on large number (up to 128) of wet (using conductive gel) electrodes for higher detection accuracy and good signal to noise ratio (SNR). They are studied and designed primarily with focus on medical applications. The electrodes are usually mounted on a special cap and connected through multiple wires. The proper positioning of the cap requires assistance and takes significant amount of time. In this work we review the principles for EEG signal processing and feature extraction most suitable for applications in consumer electronics. Further, we propose a motor imagery brain-computer interface (BCI) based system, using only two active easy to set dry electrodes connected wirelessly with a consumer electronic device. The proposed system relies on the optimal use of event related synchronization (ERS) and desynchronization (DRS) across three distinct EEG frequency bands in order to improve the detection and reduce the training time to only 10 sec. We present our ongoing research investigating the detection accuracy with different signal preprocessing techniques and feature extraction methods. The proposed system aims at making brain-computer interfaces popular with consumer products, providing a more natural human computer interaction (HCI).

Published in:

Consumer Electronics (ISCE), 2012 IEEE 16th International Symposium on

Date of Conference:

4-6 June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.