By Topic

A Highly Reconfigurable Low-Power CMOS Directional Coupler

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jiwei Sun ; Dept. of Electr. & Comput. Eng., Clemson Univ., Clemson, SC, USA ; Chaojiang Li ; Yongtao Geng ; Pingshan Wang

This paper presents a highly reconfigurable, low-power, and compact directional coupler. The coupler uses varactors and novel active inductors to achieve wide tuning ranges of operating frequencies and coupling coefficients. The use of a low-pass circuit architecture with only two inductors minimizes chip area, power consumption, and noise. The coupler is implemented in a 0.13-μm CMOS process. It occupies an area of 350 μm× 340 μm and consumes 40 mW or less power. The obtained 1-dB compression point is -3.2 dBm, and the measured noise figure is ~ 23 dB. These parameters compare favorably with previously published reconfigurable couplers. The measured coupling coefficient can be tuned from 1.3 to 9.0 dB at 4 GHz with 32 dB or better isolation and 15 dB or better return loss. The operating center frequency can be tuned from 2.0 to 6.0 GHz for a nominal 3-dB operation. These results agree with theoretical predictions and simulations reasonably well.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:60 ,  Issue: 9 )