By Topic

Blind Compensation of Nonlinear Distortions: Application to Source Separation of Post-Nonlinear Mixtures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Duarte, L.T. ; Sch. of Appl. Sci. (FCA), Univ. of Campinas (UNICAMP), Limeira, Brazil ; Suyama, R. ; Rivet, B. ; Attux, R.
more authors

In this paper, we address the problem of blind compensation of nonlinear distortions. Our approach relies on the assumption that the input signal is bandlimited. We then make use of the classical result that the output of a nonlinearity has a wider spectrum than the one of the input signal. However, differently from previous works, our approach does not assume knowledge of the input signal bandwidth. The proposal is considered in the development of a two-stage method for blind source separation (BSS) in post-nonlinear (PNL) models. Indeed, once the functions present in the nonlinear stage of a PNL model are compensated, one can apply the well-established linear BSS algorithms to complete the task of separating the sources. Numerical experiments performed in different scenarios attest the viability of the proposal. Moreover, the proposed method is tested in a real situation where the data are acquired by smart chemical sensor arrays.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 11 )