By Topic

A High-Efficiency Megawatt-Class Nonrelativistic Magnetron

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fleming, T.P. ; Air Force Res. Lab., Albuquerque, NM, USA ; Lambrecht, M.R. ; Mardahl, P.J. ; Keisling, J.D.

Numerical simulations of a prototype conventional magnetron capable of an RF output power exceeding 1.3 MW at peak efficiency greater than 87% for relatively low diode voltages of ~ 40 kV are presented. Virtual prototyping of the magnetron design is carried out on massively parallel architecture utilizing the 3-D improved concurrent electromagnetic particle-in-cell code. Simulations demonstrate that the magnetron is capable of stable and robust oscillations in the π mode at saturation with negligible mode competition at 912 MHz over a range of magnetic fields extending from B = 0.18 T to B = 0.275 T and voltages ranging from 37-56 kV. RF Output power ranged from 400 kW-1.5 MW over these voltages with efficiencies typically above 85%. Oscillations in the π mode follow the Buneman-Hartree resonance curve for all magnetic fields sampled with a window of π-mode oscillations typically extending over 6 kV. Electron back bombardment of the cathode as well as collisions with the slow wave structure acted as major loss mechanisms.

Published in:

Plasma Science, IEEE Transactions on  (Volume:40 ,  Issue: 9 )